Package: cSEM 0.5.0.9000

cSEM: Composite-Based Structural Equation Modeling

Estimate, assess, test, and study linear, nonlinear, hierarchical and multigroup structural equation models using composite-based approaches and procedures, including estimation techniques such as partial least squares path modeling (PLS-PM) and its derivatives (PLSc, ordPLSc, robustPLSc), generalized structured component analysis (GSCA), generalized structured component analysis with uniqueness terms (GSCAm), generalized canonical correlation analysis (GCCA), principal component analysis (PCA), factor score regression (FSR) using sum score, regression or Bartlett scores (including bias correction using Croon’s approach), as well as several tests and typical postestimation procedures (e.g., verify admissibility of the estimates, assess the model fit, test the model fit etc.).

Authors:Manuel E. Rademaker [aut], Florian Schuberth [aut, cre], Tamara Schamberger [ctb], Michael Klesel [ctb], Theo K. Dijkstra [ctb], Jörg Henseler [ctb]

cSEM_0.5.0.9000.tar.gz
cSEM_0.5.0.9000.zip(r-4.5)cSEM_0.5.0.9000.zip(r-4.4)cSEM_0.5.0.9000.zip(r-4.3)
cSEM_0.5.0.9000.tgz(r-4.4-any)cSEM_0.5.0.9000.tgz(r-4.3-any)
cSEM_0.5.0.9000.tar.gz(r-4.5-noble)cSEM_0.5.0.9000.tar.gz(r-4.4-noble)
cSEM_0.5.0.9000.tgz(r-4.4-emscripten)cSEM_0.5.0.9000.tgz(r-4.3-emscripten)
cSEM.pdf |cSEM.html
cSEM/json (API)

# Install 'cSEM' in R:
install.packages('cSEM', repos = c('https://floschuberth.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/floschuberth/csem/issues

Datasets:

On CRAN:

9.00 score 28 stars 2 packages 46 scripts 1.1k downloads 46 exports 47 dependencies

Last updated 3 months agofrom:6293486f15. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winNOTENov 01 2024
R-4.3-macNOTENov 01 2024

Exports:args_defaultassesscalculateAVEcalculateCFIcalculateChiSquarecalculateChiSquareDfcalculateCNcalculateDfcalculateDGcalculateDLcalculateDMLcalculatef2calculateFLCriterioncalculateGFIcalculateGoFcalculateHTMTcalculateIFIcalculateModelSelectionCriteriacalculateNFIcalculateNNFIcalculateRelativeGoFcalculateRhoCcalculateRhoTcalculateRMSEAcalculateRMSThetacalculateSRMRcalculateVIFModeBcsemdoIPMAdoNonlinearEffectsAnalysisdoRedundancyAnalysisexportToExcelfitgetConstructScoresinferparseModelpredictresamplecSEMResultsresampleDatasummarizetestCVPATtestHausmantestMGDtestMICOMtestOMFverify

Dependencies:abindadmiscalabamaclicodetoolscombinatcrayoncubaturedigestexpmfuturefuture.applyglobalsglueGPArotationlatticelavaanlifecyclelistenvmagrittrMASSMatrixmatrixcalcmatrixStatsmnormtmultipolmvtnormnleqslvnlmenumDerivparallellypbivnormpolycorprogressrpsychpurrrqrngquadprogrbibutilsRcppRcppArmadilloRdpackrlangspacefillrsymmomentsTruncatedNormalvctrs

Introduction to cSEM

Rendered fromcSEM.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-10-30
Started: 2019-04-23

Notation

Rendered fromNotation.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-18
Started: 2019-05-14

Terminology

Rendered fromTerminology.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2020-01-16
Started: 2019-05-14

Postestimation: Assessing a model

Rendered fromUsing-assess.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2023-09-18
Started: 2019-04-23

Readme and manuals

Help Manual

Help pageTopics
Data: AnimeAnime
Show argument defaults or candidatesargs_default
Assess modelassess
Data: Benitezetal2020Benitezetal2020
Data: BergamiBagozzi2000BergamiBagozzi2000
Average variance extracted (AVE)calculateAVE
Degrees of freedomcalculateDf
Calculate Cohens f^2calculatef2
Fornell-Larcker criterioncalculateFLCriterion
Goodness of Fit (GoF)calculateGoF
HTMTcalculateHTMT
Model selection criteriacalculateModelSelectionCriteria
Relative Goodness of Fit (relative GoF)calculateRelativeGoF
Calculate variance inflation factors (VIF) for weights obtained by PLS Mode BcalculateVIFModeB
Calculate composite weights using GSCAcalculateWeightsGSCA
Calculate weights using GSCAmcalculateWeightsGSCAm
Calculate composite weights using GCCAcalculateWeightsKettenring
Calculate composite weights using principal component analysis (PCA)calculateWeightsPCA
Calculate composite weights using PLS-PMcalculateWeightsPLS
Calculate composite weights using unit weightscalculateWeightsUnit
Composite-based SEMcsem
Data: Second order common factor of compositesdgp_2ndorder_cf_of_c
Calculate difference between S and Sigma_hatcalculateDG calculateDL calculateDML distance_measures
Do an importance-performance matrix analysisdoIPMA
Do a nonlinear effects analysisdoNonlinearEffectsAnalysis
Do a redundancy analysisdoRedundancyAnalysis
Export to Excel (.xlsx)exportToExcel
Model-implied indicator or construct variance-covariance matrixfit
Model fit measurescalculateCFI calculateChiSquare calculateChiSquareDf calculateCN calculateGFI calculateIFI calculateNFI calculateNNFI calculateRMSEA calculateRMSTheta calculateSRMR fit_measures
Get construct scoresgetConstructScores
Inferenceinfer
Data: ITFlexITFlex
Data: LancelotMiltgenetal2016LancelotMiltgenetal2016
Parse lavaan modelparseModel
'cSEMIPMA' method for 'plot()'plot.cSEMIPMA
'cSEMNonlinearEffects' method for 'plot()'plot.cSEMNonlinearEffects
Data: political democracyPoliticalDemocracy
Predict indicator scorespredict
ReliabilitycalculateRhoC calculateRhoT reliability
Resample cSEMResultsresamplecSEMResults
Resample dataresampleData
Data: RussettRussett
Data: satisfactionsatisfaction
Data: satisfaction including gendersatisfaction_gender
Data: SummersSigma_Summers_composites
Data: SQSQ
Summarize modelsummarize
Data: SwitchingSwitching
Perform a Cross-Validated Predictive Ability Test (CVPAT)testCVPAT
Regression-based Hausman testtestHausman
Tests for multi-group comparisonstestMGD
Test measurement invariance of compositestestMICOM
Test for overall model fittestOMF
Data: threecommonfactorsthreecommonfactors
Verify admissibilityverify
Data: Yooetal2000Yooetal2000